

LA-UR-21-23923

Approved for public release; distribution is unlimited.

Title: Case Study 4 - Rocky Flats Plant Fires (1957 and 1969)

Author(s): Schreiber, Stephen Bruce

Clark, David Lewis

Intended for: NEST NFFW 1110 course (Spring 2021 Semester)

Issued: 2021-04-22

Case Study 4 -**Rocky Flats Plant Fires** (1957 and 1969)

Steve Schreiber/David Clark

Actinide Operations/National Security Education Center

LA-UR-21-XXXXX

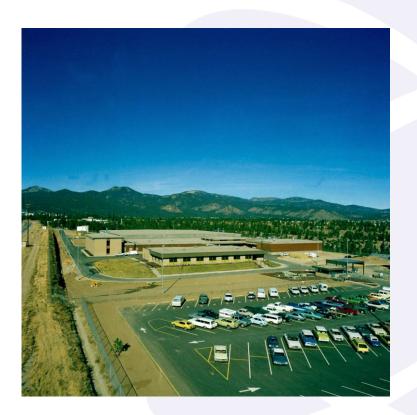
Agenda

- 1. Background
- 2. Simply Difficult Videos "RFP 1957" and "RFP 1969"
 - What is accurate?
 - What is missing?
- 3. References
 - "A September 11th Catastrophe You've Probably Never Heard About" The Atlantic (2012)
 - "The day they almost lost Denver" BotAS (1999)
- 4. What changed as a result?
 - At the Rocky Flats Plant
 - At Los Alamos

What changed as a result of this event?

Facility designed for plutonium metal fire safety

- Atomic Energy Commission/Department of Energy response to the 1969 fire was to design, fund and construct
 - Building 371 at Rocky Flats for pit production
 - TA-55 Plutonium Facility complex for research and development at Los Alamos Scientific Laboratory which was commissioned in 1978
- The latter has been described as "a monument to fire safety"



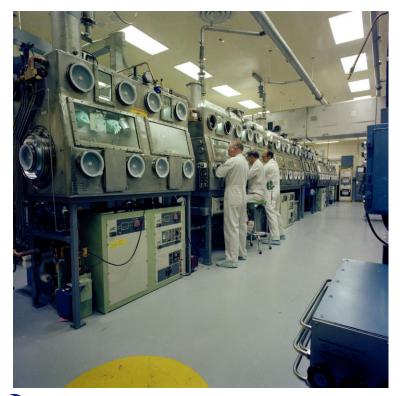


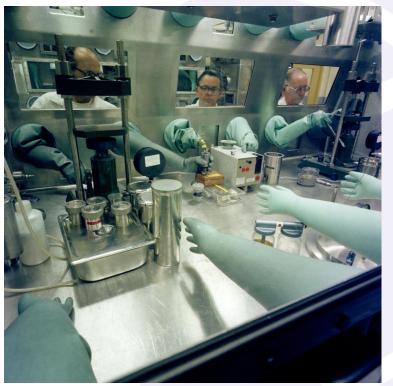
Facility designed for plutonium metal fire safety

- Reinforced concrete structure designed with many small compartments to segregate laboratories and processing areas
- Fire wall between essentially two separate buildings, 100 and 300 Areas
- Gloveboxes constructed of noncombustible materials, fitted with thermal sensors, automated firedoors on the air supply ducts (trolley tunnels) to limit air flow, and local fire alarm buttons
- Fire detection system with 650 detection points (smoke and heat detectors)

Facility designed for plutonium metal fire safety

- Fire suppression system with sprinklers fed by two 150,000gallon water tanks securing the filter plenums
- No collection points for water on the process floor, dished with respect to the safe haven of the hallways
- No processing or storage of Pu in trolleyways, dropboxes or plenums
- Continuous 24-hour/day monitoring from the Operations Center




TA-55 PF-4 Operations Center

TA-55 PF-4

Process hazards

- Today's challenge is not to ignore the mundane or common hazards and focus only on the extreme, exotic and unlikely hazards
- Fire safety (mundane) or chemical exposure (common) vs. criticality safety (exotic) or radiation release (detectible)

Questions?

